Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel

نویسندگان

  • Walter Zenk
  • Eugene Morozov
چکیده

[1] A decadal warming trend of Antarctic Bottom Water flowing through the Vema Channel is reanalyzed. Our data base consists of 94 high precision, full depth stations from 19 visits to the Vema Sill plus twelve stopovers at two additional key locations. Originally a long-term temperature increase in the near-bottom jet was noted from 1992 onward, after a period of rather constant abyssal temperatures since 1972. From today’s perspective the apparent stagnant temperature level until 1991 can be interpreted as a period of feeble rising in comparison with a perspicuous warming trend of 2.8 mK yr 1 in the following 15 years. However, the clearly manifested temperature rise is superimposed with fluctuations. For the first time the available time series appears long enough to indicate an associated slight freshening of the bottom water. An attempt is made to trace the observed variability back to its source region in the Weddell Sea. Citation: Zenk, W., and E. Morozov (2007), Decadal warming of the coldest Antarctic Bottom Water flow through the Vema Channel, Geophys. Res. Lett., 34, L14607, doi:10.1029/2007GL030340.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suspended Particulate Matter Transport through the Vema Channel

Sixteen-month time-series measurements of water velocity and light scattering were coupled with hydrographic and suspended particulate matter sections to determine the flux and the variability in flux of suspended particulate matter through the Vema Channel. The northward flux of SPM through the Vema Channel ranged from 3 to 10.5 × 104 g s 1 with a mean of 6.5 × 104 g s 1. The largest fluxes we...

متن کامل

A sediment trap experiment in the Vema Channel to evaluate the effect of horizontal particle fluxes on measured vertical fluxes

Sediment traps are used to measure fluxes and collect samples for studies in biology, chemistry and geology, yet we have much to learn about factors that influence particle collection rates. Toward this end, we deployed cylindrical sediment traps on five current meter moorings across the Vema Channel to field-test the effect of different horizontal particle fluxes on the collection rate of the ...

متن کامل

Multidecadal warming of Antarctic waters.

Decadal trends in the properties of seawater adjacent to Antarctica are poorly known, and the mechanisms responsible for such changes are uncertain. Antarctic ice sheet mass loss is largely driven by ice shelf basal melt, which is influenced by ocean-ice interactions and has been correlated with Antarctic Continental Shelf Bottom Water (ASBW) temperature. We document the spatial distribution of...

متن کامل

Resistance to Flow in a V-Shaped Bottom Channel

Water flow in open channels is always subject to the resistance to flow and energy dissipation. For design purposes, one of the needed variables is the hydraulic resistance coefficient. For this mean, the influence of cross-sectional shape together with secondary flow cells and lateral distribution of true boundary shear stress have not yet been fully explored. This paper surveys the number of ...

متن کامل

The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay

A fourth production region for the globally important Antarctic bottom water has been attributed to dense shelf water formation in the Cape Darnley Polynya, adjoining Prydz Bay in East Antarctica. Here we show new observations from CTD-instrumented elephant seals in 2011-2013 that provide the first complete assessment of dense shelf water formation in Prydz Bay. After a complex evolution involv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007